Qualitative Reasoning with Modelica Models

Matthew Klenk and Johan de Kleer and Daniel G. Bobrow and Bill Janssen
Palo Alto Research Center
3333 Coyote Hill Rd
Palo Alto, CA, 94303
klenk,dekleer,bobrow,janssen @parc.com

Abstract

Qualitative reasoning can play an important role in early
stage design. Currently, engineers explore the design
space using simulation models built in languages such
as Modelica. To make qualitative reasoning useful to
them, designs specified in their languages must be trans-
lated into a qualitative modeling language for analysis.
The contribution of this paper is a sound and effective
mapping between Modelica and qualitative reasoning.
To achieve a sound mapping, we extend envisioning,
the process of generating all relevant qualitative behav-
iors, to support Modelica’s declarative events. For an ef-
fective mapping, we identify three classes of additional
constraints that should be inferred from the Modelica
representation thereby exponentially reducing the num-
ber of unrealizable trajectories. We support this contri-
bution with examples and a case study.

1 Qualitative reasoning and design

Qualitative reasoning (QR) (Kuipers 1994)(de Kleer and
Brown 1984)(Forbus 1984), which automates reasoning
about the continuous world using abstraction, can play an
important role in early stage design. Unfortunately, the lan-
guages of QR have not made inroads into engineering prac-
tice, and, consequently, QR has not been applied in indus-
trial settings, with a few notable exceptions (e.g., (Struss and
Price 2004)). Instead, engineers use simulation models built
in languages such as Modelica (Fritzson 2004), to under-
stand the possible behaviors of their design. To make QR
useful to them, it is necessary to operate directly from the
engineer’s models.

QR captures the relevant differences in behavior result-
ing from significant differences in parameter values. Thus,
QR can play an important role in early stage design. We
work to realize this promise as part of the DARPA Adap-
tive Vehicle Make' (AVM) program. AVM seeks to dramati-
cally reduce the cost and time required to design, verify and
manufacture complex cyber-physical systems. We integrated
qualitative reasoning into the CyPhy toolchain (Simko et al.
2012) for use by designers (Lattmann et al. 2014). The Cy-
Phy toolchain uses the Modelica language to model hybrid

Copyright (© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"http://en.wikipedia.org/wiki/Adaptive_Vehicle_Make

systems. When a designer runs a simulation to determine if a
model will meet a particular requirement, one of two things
will happen. One, the model fails to meet the requirement.
In this case, QR can inform the designer which parameters
to change or if a change in structure is required. Two, the
model meets the requirement. In this case, QR can help the
designer understand what ranges of parameter values will
maintain success, and under what circumstances lead to fail-
ures.

The contribution of this paper is a sound and effective
mapping between Modelica and QR. We create an abstrac-
tion of the Modelica model. From this abstraction, our envi-
sioning algorithm generates the set of all possible qualitative
behaviors, called an envisionment. In a sound mapping, the
behavior of every Modelica model with same structure of
components corresponds to a trajectory in the envisionment.
Unlike current QR approaches, Modelica events are speci-
fied declaratively with acausal component models. This con-
fers two advantages: (1) the models correspond to the phys-
ical structure of the system, and (2) by being declarative and
acausal, they are easier to reuse in different contexts.

To create a sound mapping, we introduce the first en-
visioning algorithm for computing the qualitative conse-
quences of Modelica events. Central to this approach is the
role of non-discontinuous variables across events. Unfor-
tunately, directly abstracting Modelica models results in a
large number of qualitative behaviors that are not realizable,
that is, they have no corresponding quantitative behavior.
While these spurious behaviors (Struss 1988) are well stud-
ied in the literature, reducing them improves the utility of
the resulting analyses. We identify three classes of additional
constraints that must be computed from the Modelica equa-
tions. We demonstrate this contribution through detailed ex-
amples, a case study that shows the additional constraints
result in an exponential reduction in the size of the envision-
ment.

2 Modelica models and qualitative reasoning

To abstract Modelica models for envisioning, it is neces-
sary to understand how each approach represents continu-
ous and discrete dynamics. This allows us to define a sound
qualitative abstraction of Modelica models. While Model-
ica’s continuous behavior corresponds directly with existing
envisionments, there is no such alignment between current

Figure 1: Modelica tools allow designers to compose models
from existing libraries of components and define new com-
ponents. The composed system can then be simulated nu-
merically over time.

Modelica Design Tool

Display Behavior

Flattened Numeric Trajectories

Model Solver

System Model W (Computing Behavior
m i (Hybrid DAE)

QR approaches and Modelica’s declarative events. To ac-
count for this discrete behavior, we introduce an algorithm
for computing the qualitative effects of events using condi-
tional constraints and show how it corresponds with Model-
ica.

2.1 Dynamics modeling in Modelica

Figure 1 illustrates the modeling and simulation process
when using Modelica tools. The process begins with the
user creating a hierarchical Modelica model from a library
of reusable components. Next, the tool compiles the com-
posed model into a set of hybrid differential algebraic equa-
tions (DAE) and uses numerical methods, e.g., DASSL (Pet-
zold 1982), to produce a sequence of numeric values for ev-
ery model variable over time. In Modelica, the continuous-
time behavior is governed by differential (1) and algebraic
(2) equations with state variables, x, algebraic variables, v,
and inputs, u. The algebraic variables may include discrete
variables, such as booleans or enumerated types.

w(t) = f(x(t),y(t), u(t)) M

y(t) = g(x(t), u(t)))

In addition, Modelica models include a set of conditions

that trigger discrete changes, or events, in the system. Events

are simulated as though they were instantaneous. They may

change the values of variables as well as the set of equations

governing the behavior of the system. Furthermore, events

may cause other events. While sequential, the entire event
sequence has no duration.

2.2 Dynamics modeling in qualitative reasoning

Our constraint-based qualitative reasoner draws on the
ideas from established methods (de Kleer and Brown
1984)(Kuipers 1994). QR abstracts continuous quantities
into intervals bounded by landmarks. For example, the qual-
itative model of a diode includes a voltage landmark that
determines if the diode is “on” or “off”’. We capture land-
marks using variables with the common 3-valued qualita-
tive abstraction corresponding to the sign of the value: {Q-
,Q0,Q+} with QO corresponding to the landmark value. The
qualitative behavior of a system is a sequence of alternat-
ing intervals and instants with an instant whenever a quan-
tity reaches a landmark. The set of all possible behaviors
is called an envisionment and is typically represented as a
graph. Each node represents a qualitative state (i.e., an as-
signment a qualitative value to each variable). Each edge is

Table 1: Relation of qualitative values for the equation = +
y = z. “*” indicates any qualitative value.

[z [y =]
Q+ [Q+ [Q+
Q+ [Q0 [Q+
Qr[Q [*
Q0 [Q+ [Q+
Q0 [Q0 [QD
Q[Q [Q
Q [Q+[*
Q [Q[Q
e [Q[Q

a successor relation that is determined by constraints on the
qualitative values of their quantities.

2.3 Creating constraints from Modelica equations

There are a variety of methods (e.g., (Kuipers 1994)) to cre-
ate constraints from simple equations. As this is not the main
topic of this paper, we briefly describe our approach here.
Each equation is abstracted into a relation on the qualita-
tive values. Table 1 characterizes the relation for the equa-
tion z + y = z. Similar relations describe the higher-order
derivatives.

To model Modelica conditional expressions, we introduce
a new powerful type of conditional constraint. Conditional
expressions change the arguments of the equation depend-
ing on the truth value of the condition. Consider equation 3
which defines a step output, ¥, as a function of time.

y = offset + (if time < startTime then O else height);

3)

To create conditional constraints, it is necessary to use
additional variables. We create threshold variables for each
inequality in the condition, and a conditional variable for
the entire conditional expression. Next, we create two con-
ditional constraints, one for each truth value of the condi-
tion. These constraints ensure equality between the condi-
tional variable and the appropriate clause of the conditional
expression. Equation 3 results in the following constraints.

thresholdl = time — startTime @)
0.0 th holdl <O

conditional3 = . resio < (®)]
height thresholdl £ 0

y = offset + conditional3 (6)

The threshold variable, thresholdl, captures the
condition of the conditional expression and is de-
fined by constraint 4. Conditional constraints (5) assigns
conditional3 to the appropriate clause of the condi-
tional expression. Constraint 6 captures the entire original
equation, equation 3. A constraint is active if it does not have
a condition or its condition is true in the current state.

Figure 2: Soundness relationship between Modelica and QR
Modelica Model

Qualitative Model

_ - g
p2| | Abstraction e
Abstract parameters to

! i aiie
P1| intervals ;

Envisioni Simulate any point in
nvisioning the abstraction

Quantitative Behaviors
Homomorphism

/ 0
Every simulation

corresponds to a trajectory time

Envisionment

2.4 Sound abstraction of Modelica models

A sound abstraction of a Modelica model ensures that the
results of every quantitative simulation of consistent sets of
numeric parameters correspond to a trajectory in the envi-
sionment. This relationships is shown in Figure 2. Given a
Modelica model (upper right), we create an abstraction con-
sisting of constraints and an initial qualitative state (upper
left) from which we produce an envisionment (lower left).
Every assignment of parameters that is consistent with re-
spect to the Modelica model and the abstraction will result
in a quantitative simulation (lower right), and each correct?
simulation will correspond to a trajectory in the envision-
ment. The translation is unsound if there exists a set of valid
quantitative parameters that generates a correct simulation
that does not correspond to any trajectory in the envision-
ment.

2.5 Abstracting states

Abstracting a quantitative state into a qualitative state un-
derlies our definition of soundness and determines the ini-
tial qualitative state for the envisionment. For each contin-
uous Modelica variable, its sign determines its correspond-
ing qualitative value: {Q-,Q0,Q+}. For each discrete Mod-
elica variable, we assign its symbolic value to the qualitative
variable. The remaining qualitative variables are threshold
and conditional variables that correspond to combinations of
Modelica variables. Therefore, we can compute their value
from the quantitative state. To determine the initial quali-
tative state, we use OpenModelica3 to determine the ini-
tial quantitative state and the above procedure to generate
a unique qualitative state.

2.6 Abstracting behavior

Sections 2.1 and 2.2 describe how Modelica systems and
qualitative systems evolve over time. In this section, we first
leverage previous work to show that the continuous-time be-
havior of the abstracted model is correct. Then, we define

*Issues with numeric simulation algorithms may result in faulty
simulation results. The envisionment may actually be used to de-
tect such occurrences by the lack of correspondence between sim-
ulation and qualitative trajectory.

3www.openmodelica.org

our algorithm for computing qualitative effects of Modelica
events and illustrate how it maintains the desired relation-
ship between the models.

Continuous behavior In Modelica and QR, each vari-
ables’ derivatives determine their continuous-time behavior.
In constructing the hybrid-DAE (equations of form 1 and 2),
Modelica compilers perform index reduction to arrive at an
index-1 system of equations. Thus, every continuous-time
variable is differentiable with respect to time, and therefore,
correspond to Kuiper’s reasonable functions (Kuipers 1994).
Therefore, for any finite simulation, by the guaranteed cov-
erage theorem (Kuipers 1994), the correct continuous-time
behavior of the Modelica model must appear in the envision-
ment.

Discrete behavior Our algorithm for computing the qual-
itative effects of Modelica events enables the alignment of
Modelica’s discrete behavior (Otter, Elmqvist, and Mattsson
1999) with the envisionment. Modelica events occur when
conditions change truth value. While numeric solvers must
change step sizes to identify the moment that these events
occur, during envisioning, events must occur at instants be-
cause the conditions are abstracted into threshold variables
(as described in section 2.3). Consider thresholdl from
conditional constraints 5. The truth value of the condition
changes when threshold1 transitions from @+ to QO or
from QO to Q+.

In addition to aligning when events occur, it iS neces-
sary to align their effects. Modelica calculates the effects
of events as follows. Within an event, the conditions deter-
mine the system of equations that must be solved using the
state variables. If this results in changes to the truth values of
the conditions, then another event is immediately triggered.
The process terminates when the solution to the event sys-
tem does not result in changes to the conditions.

During envisioning, an event occurs when a new state
does not have the same active constraints as its predecessor
(i.e., a condition changes value). We compute the qualita-
tive results (i.e., successor states) of events using three steps:
(1) identify which variables are unchanged by the event,
(2) solve for all states consistent with the unchanged vari-
ables and current constraints, (3) for each new state, add it
as a successor to the current state. If it does not have the
same constraints as the current state, trigger another discrete
event.

In step 1, we use non-discontinuous variables (NDV) to
identify which variables are unchanged by the event. NDVs
are state variables, constants, and declared by the user. We
use the changing constraints to identify which variables
could change at the event. We then propagate the set of po-
tentially changing variables through the constraints stopping
at NDVs. The remaining variables are unchanged through
the event. This process is shown in algorithm 1. First, we
initialize the set of unchanged variables to all of the sys-
tem variables, and the constraint queue to the symmetric
difference of the previous and currently active constraints.

“Bookkeeping that prevents constraints being added to the
queue multiple times is omitted here for clarity.

Next, we loop until the constraint queue is empty. For each
variable on a constraint from the queue, if it is not a state
variable, we remove it from the set of unchanged variables,
and add each of its constraints to the queue. In previous ap-
proaches, the computation of unchanged variables is either
performed using heuristics (Nishida and Doshita 1987) or
required as input (Kuipers 1994).

Algorithm 1: Compute the set of unchanged variables,
UV, from the set of previous constraints, PC, active
constraints, AC, and variables V. C'C is the queue of
constraints through which discrete changes may propa-
gate. N DV is the set variables that are guaranteed to be
maintain their values through events.

constantVars (PC,AC,V)
begin
UV «V
CC + (PCUAC) - (PCnNAQC)
while notEmpty(C'C') do
¢ < dequeue(CC)
foreach v € variables(c) do
if - v € NDV) then
remove v from UV
foreach c € constraints(v) do
| enqueue(c,CC)
return UV

In step 2, we generate every qualitative state consistent
with the unchanged variables and the constraints from the
current state. This is analogous to Modelica solving the
event equation system for all the variables. In step 3, each
state in this set is a successor of the current state, and if its
constraints differ from the current constraints, then an addi-
tional discrete event occurs. This potential for instantaneous
event sequences captures Modelica’s discrete behavior.

To demonstrate the alignment of simulation results, con-
sider the scenario of a car accelerating from rest with the
parking brake on. Once the torque exceeds the static fric-
tion of the brake, the brake applies a reduced sliding friction
as the wheel begins to move. The standard Modelica model
represents this behavior as a discrete event when the torque
exceeds static friction, followed by continuous integration
to determine if the wheel starts moving forward, followed
by another discrete event to change the operating mode of
the brake to forward motion.

Table 2 illustrates the alignment of Modelica values with
the sequence of qualitative states that occur during this sce-
nario. The first two rows correspond to an interval state as
the applied torque, torquel.tau, approaches the landmark
representing the maximum static friction, threshold2.
At time = 0.25 and instantaneous state 1824, the applied
torque is equal to the maximum static friction. Because any
increase in time results in a change in the truth value for the
equation that sets startForward, OpenModelica triggers
an event. Qualitative simulation creates a continuous tran-
sition to state 2931 and identifies an event must occur be-
cause the set of active constraints has changed. The new set

of constraints assign true to startForward in state 3004.
This new discrete value triggers a sequence of two more
events changing the values of locked and the brake’s ac-
celeration. Our discrete transition algorithm terminates with
state 3156 because its active constraints are the same as the
previous state, 3080. The values of this state correspond di-
rectly with the values of from the Modelica simulation at
time = 0.25+. At this point, envisioning and quantitative
simulation determine that the next value of w is positive.
This causes a change in the equations and constraints gov-
erning the mode variable triggering another event. This cul-
minates in state 4098 which has corresponding qualitative
values of the Modelica simulation at time = 0.25++, that
is, the brake has just started sliding forward and is acceler-
ating. The sequence of states from 1824 through 4098 are
instantaneous from the perspective of the analysis. The final
two rows of the table, time = 0.252 and time = 0.254,
correspond with the interval state 4294.

This alignment demonstrates our algorithm for computing
the qualitative effects of Modelica events. One weakness of
our approach is that step 2, finding all the states consistent
with the unchanged variables and current constraints, occa-
sionally results in ambiguous branching (i.e., different se-
quences of instants following a event). While problematic,
this set of states includes the trajectory of corresponding
Modelica simulations. This ambiguity is why we allow the
user to specify non-discontinuous variables. A piece of fu-
ture work is to more tightly integrate our qualitative simula-
tor with a symbolic equation solver (e.g., Macsyma (Bogen
1986)) to be able to identify unchanging variables by their
equations with respect to the system’s parameters and state
variables.

3 Additional qualitative constraints

While the abstraction of the hybrid-DAE described in sec-
tion 2.3 results in a correct envisionment, this envisionment
includes many spurious states. Reducing the number of these
states is necessary to provide practical feedback to design-
ers. While unrealizable states and trajectories are a long-
standing problem in qualitative simulation (Struss 1988),
many states exist because the hybrid-DAE contains only the
minimal set of equations necessary for numeric solvers. The
second contribution of this paper is the identification of three
classes of additional constraints that reduce the number of
spurious trajectories without sacrificing the correctness of
the qualitative model.

3.1 Continuity and compatibility conditions

System dynamics theorems specify the minimal set of equa-
tions necessary to enforce the continuity and compatibil-
ity conditions (e.g., Kirchoff’s Voltage and Current Laws).
While sufficient for Modelica simulation, this minimal set
results in ambiguities for qualitative arithmetic (de Kleer
and Brown 1984). Therefore, it is necessary to compute the
quantitatively redundant node and loop equations by com-
bining continuity and compatibility equations in the hybrid-
DAE. We do this repeatedly adding only the equations that
constrain the qualitative behavior. Figure 3 shows a Model-

Table 2: Values generated by OpenModelica and qualitative simulation of the brake model as it begins to move. Quali-
tative quantity values are given for the angular velocity and applied torque with respect to the maximum static friction,
threshold2 = torquel.tau — 0.25. The state column provides identifiers for the corresponding qualitative state. ‘*’ indi-
cates that the qualitative state was created by the discrete event algorithm and not continuous integration. ‘+’ indicates that the
value has been truncated for presentation, and the real value is slightly greater than the value in the field. ‘—’ is used for fields
with no corresponding Modelica values. The headings w, and a correspond to the speed, and acceleration respectively of the
brake. brakel.tau is the force applied by the brake against the applied torque of the system, torquel.tau.

torquel.tau, start
time state | w, QValue(w) a brakel.tau QValue(threshold2) 1locked Forward mode
0.246 1255 0.0, [Q0,—] 0.0 0.246 0.246, [Q-,T] true false stuck
0.248 1255 0.0, [Q0,—] 0.0 0.248 0.248 , [Q-,1] true false stuck
0.25 1824 0.0, [Q0,—~] 0.0 0.25 0.25, [Q0,1] true false stuck
— 2931 —, [Q0,—] — — —, [Q+,1] true false stuck
— 3004* | —, [Q0,—] — — —, [Q+,1] true true stuck
— 3080* | —, [QO0,—] — — —, [Q+,1] false true stuck
0.25+ 3156* | 0.0, [QO0,1] 0.125+ 0.125 0.25+, [Q+,1] false true stuck
— 3753 —, [Q+,1] — — —, [Q+,1] false true stuck
— 3949*% | — [Q+,T] — — —, [Q+,1] false true forward
— 4022*% | — , [Q+,T] — — —, [Q+,1] false false forward
0.25++ 4098* | 1.2E-10, [Q+,1] 0.125+ 0.125 0.25+, [Q+,71] false false forward
0.252 4294 0.00025, [Q+,1] 0.127 0.125 0.27, [Q+,1] false false forward
0.254 4294 0.00051, [Q+,1] 0.129 0.125 0.29, [Q+,1] false false forward

Figure 3: Modelica model of a diode in parallel with a ca-
pacitor annotated with the three KVL loops.

2

resistorl resistor2

R=10000 R=15000
L L]

=
0=

4 1

T9polp

3 %

TabejjonurISUOD
T4031DedRD

T0000°0
o— =

\\%-

groundl

ica model for a diode and capacitor in parallel. The hybrid-
DAE includes equations 7 and 8 for voltage loops 1 and 2:

rl.v=batl.V— cl.v; 7)
rl.v="batl.V—r2.v —dl.v; 8)

By combining equations 7 and 8, we arrive at the equation
for the third voltage loop.

r2.v=cl.v —dl.v;)

While equation 9 is redundant from the perspective of
Modelica simulation, the resulting constraint rules out addi-
tional qualitative states. For example, the following values,
batl.v = Q+, r1.v = Q+, r2.v = Q+, d1.v = Q+, and
cl.v = Q-, are consistent with the constraints from equa-
tions 7 and 8, but are ruled out by the constraints resulting

from equation 9. Thus, we add this equation to the system
before creating the constraints.

3.2 Higher-order derivative equalities

Another technique for generating additional constraints con-
cerns equalities between variables with explicit derivatives.
Consider the equations 10-12 modeling a brake attached to a
flywheel. While their positions and velocities are equal, the
hybrid-DAE represents this in three equations.

brakel.phi = flywheell.phi; (10)
brakel.w = der(brakel.phi); (11)
flywheell.w = der(flywheell.phi); (12)

Converting these three equations to qualitative constraints
fails to capture the equality between the velocities. There-
fore, for any two variables that are equal and have ex-
plicit derivatives, we add equality constraints between their
derivatives. In this case, we add equation 13 ensuring that
the velocity of the flywheel is equal to the velocity of the
brake.

brakel.w = flywheell.w (13)

3.3 Partially ordered landmarks

The hybrid-DAE does not explicitly define quantity spaces,
or the important values for each variable. Threshold vari-
ables must be computed from the conditional expressions.
Consider the threshold variables defined by equations 14
and 15. brakel.sa is a quantity representing the torque ap-
plied by the brake while it is stuck. brakel.tau0_max and
brakel.tauO are parameters and correspond to the maxi-
mum static friction and initial sliding friction respectively.

threshold3 = brakel.sa — brakel.tau0 (14)
threshold4 = brakel.sa — brakel.tauOmax (15)

Consider a Modelica model where brakel.tau0 = 0.25
and brakel.tau0_max = 0.5. In the qualitative state where
brakel.sa < brakel.tau0 and increasing, threshold3
and threshold4 have the same qualitative value, [Q-:1].
That is, the quantity brakel.sa is approach both thresholds.
Envisioning will consider four cases for the successor states:
(1) threshold3 is reached, (2) threshold4 is reached,
(3) threshold3 and threshold4 are reached at the same
time, and (4) neither threshold is reached. Using just the
constraints resulting from equations 14 and 15, none of
these situations can be ruled out. Because brakel.tau0 <
brakel.tau0O_max, we create constraint 16 to capture the
partial ordering of the thresholds. Thus, if a threshold is
reached, it will be threshold3.

Q+ = threshold3 — threshold4 (16)

3.4 Case study

To illustrate the value of these additional constraints, we
conducted the following case study. We created three sim-
ple systems (described below) built from electrical and me-
chanical components from the Modelica Standard Library .
We performed two envisionments of each model: a baseline
without the additional constraints and one with all of the ad-
ditional constraints. We measure the number of qualitative
states produced by the envisionment and expect a reduction
in size in the additional constraints case.

e Brake: A ramp source torque attached to a brake applied
to a stationary flywheel.

e RC-ladder: A battery is connected a ladder of three resis-
tors and three capacitors

e Adby: An oscillatory circuit consisting of two resistors,
two capacitors, and an inductor

Table 3: Number of qualitative states resulting from a simu-
lation with different classes of constraints.

Model \Baseline Additional Constraints

Brake 85 37
RC-ladder 241 28
Adby 5858 646

In each of these systems, we observed a significant re-
duction in the number of qualitative states. Because the ad-
ditional constraints act to filter unrealizable behavior, every
state in the reduced envisionment also appears in the base-
line envisionment. We expected this reduction to be expo-
nential. Therefore, we performed the experiment on a se-
quence of five RC-ladders of increasing size and found that
the log of number of states filtered by additional constraints
has a linear relationship with the number of components in
the model. Therefore, the reduction is exponential.

>https://www.modelica.org/libraries

4 Related work

While numerous approaches to qualitative simulation have
addressed issues surrounding discrete events, they all require
additional modeling than what is contained in Modelica’s
hybrid-DAE. For example, QSIM (Kuipers 1994) requires
a user-supplied transition mapping function when there is a
change in operating regions. This function includes the new
set of constraints, the variables whose magnitudes are un-
changed, the variables whose derivatives are unchanged, and
any values that must be asserted. These system-level events
are not compositional. De Kleer and Brown use modes and
propagate non-local discrete changes through heuristics to
provide a causal account of device behavior (de Kleer and
Brown 1984). Our algorithm determines the qualitative ef-
fects of declarative events from component models. Nishida
and Doshita present two methods for modeling discrete
changes in envisioning: (1) as continuous change that hap-
pens over infinitesimals, (2) as a sequence of mythical in-
stants which may be inconsistent with the model (Nishida
and Doshita 1987). Iwasaki er al. formulate instantaneous
discrete changes using rules and hyperreal time semantics
(Iwasaki et al. 1995). Our approach draws on the idea of in-
finitesimals and mythical instants that may be inconsistent
with respect to the constraints to define our instantaneous
event sequences. These ideas are essential to capturing Mod-
elica’s discrete behavior in the envisionment.

5 Discussion

The purpose of this work is to apply qualitative reasoning to
simulation models without burdening the designer. We de-
fine a sound and effective mapping between Modelica and
our qualitative modeling approach. To accomplish this, we
introduce an algorithm that determines the qualitative ef-
fects of events directly from the acausal Modelica model.
Declarative events enable physical components models to
be reused in many contexts. While our approach does not
employ heuristics or require the additional modeling knowl-
edge like previous approaches, we do allow the user to spec-
ify pseudo-state variables that maintain their values through
discrete transitions, to reduce unrealizable trajectories. Di-
rectly translating the hybrid discrete and algebraic equations
from Modelica into constraints results in an envisionment
with many unrealizable trajectories. By making the implicit
information of equations explicit, we reduce the set of un-
realizable trajectories improving the utility of the resulting
envisionment. We identify three classes of quantitatively re-
dundant relations in the hybrid-DAE: (1) the continuity and
compatibility relations, (2) relations between higher-order
derivatives, and (3) qualitative landmark ordering relations.
We show that these constraints exponentially reduce the size
of the envisionment.

These contributions are an important step toward integrat-
ing qualitative reasoning into design tools. Automating qual-
itative reasoning could free the designer to focus on more
creative parts of the design process as well as new tech-
niques for design space exploration and guided quantitative
analysis.

Acknowledgments

This work was partially sponsored by The Defense Ad-
vanced Research Agency (DARPA) Tactical Technology Of-
fice (TTO) under the META program and is Approved for
Public Release, Distribution Unlimited. The views and con-
clusions in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressly or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government.

References

Bogen, R. 1986. MACSYMA reference manual. Symbolics,
Incorporated.

de Kleer, J., and Brown, J. S. 1984. A qualitative physics
based on confluences. Artificial Intelligence 24(1):7-84.
Also in: Bobrow, D. (ed.) Qualitative Reasoning about
Physical Systems (North-Holland, Amsterdam, 1984 / MIT
Press, Cambridge, Mass., 1985).

Forbus, K. D. 1984. Qualitative process theory. Artificial
Intelligence 24(1):85-168. Also in: Bobrow, D. (ed.) Qual-
itative Reasoning about Physical Systems (North-Holland,
Amsterdam, 1984 / MIT Press, Cambridge, Mass., 1985).

Fritzson, P. 2004. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Piscataway, NJ: Wiley-
IEEE Press.

Iwasaki, Y.; Farquhar, A.; Saraswat, V.; Bobrow, D.; and
Gupta, V. 1995. Modeling time in hybrid systems: How
fast is” instantaneous”? In International Joint Conference
on Artificial Intelligence, volume 14, 1773-1781. Citeseer.

Kuipers, B. 1994. Qualitative reasoning: modeling and sim-
ulation with incomplete knowledge. Cambridge, MA, USA:
MIT Press.

Lattmann, Z.; Pop, A.; de Kleer, J.; Fritzson, P.; Janssen, B.;
Neema, S.; Bapty, T.; Koutsoukos, X.; Klenk, M.; Bobrow,
D.; Saha, B.; and Kurtoglu, T. 2014. Verification and design
exploration through meta tool integration with openmodel-
ica. In Proceedings of the 10th International Modelica Con-
ference.

Nishida, T., and Doshita, S. 1987. Reasoning about discon-
tinuous change. In Proc. AAAI, volume 87, 643-648.

Otter, M.; Elmqvist, H.; and Mattsson, S. E. 1999. Hybrid
modeling in modelica based on the synchronous data flow
principle. In Computer Aided Control System Design, 1999.
Proceedings of the 1999 IEEFE International Symposium on,
151-157. 1EEE.

Petzold, L. R. 1982. Description of dassl: A differential/al-
gebraic system solver. Technical report, Sandia National
Labs., Livermore, CA (USA).

Simko, G.; Levendovszky, T.; Neema, S.; Jackson, E.; Bapty,
T.; Porter, J.; and Sztipanovits, J. 2012. Foundation for
model integration: Semantic backplane. In Proceedings of
the ASME 2012 International Design Engineering Technical
Conferences & Computers and Information in Engineering
Conference IDETC/CIE, 12-15.

Struss, P., and Price, C. 2004. Model-based systems in the
automotive industry. Al Magazine 24(4):17-34.

Struss, P. 1988. Mathematical aspects of qualitative rea-
soning. International Journal of Artificial Intelligence in
Engineering 3(3).

