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Abstract
Engineers need to perform many different
types of analyses as they design systems. Mod-
elica has become a leading language to sup-
port numerical simulation. As a consequence
there is widespread understanding of Modelica
and a large number of Modelica model libraries
available. This paper addresses the task of us-
ing formal methods to derive system proper-
ties such as whether a design meets its require-
ments for all possible inputs. We report on our
experience building a qualitative reasoner op-
erating on Modelica models. In this paper, we
highlight five Modelica modeling practices that
impede the application of formal methods.

1 Introduction
Modelica [Fritzson, 2004] is a powerful language for spec-
ifying the behaviors of components represented by declar-
ative constructs connected through power ports. Modelica
provides designers with large libraries of standard mod-
els and compile time computation to create large mod-
els. These features attract designers interested in numeric
simulation and researchers developing new analyses. In
contrast, the languages qualitative reasoning [Weld and de
Kleer, 1989] and other hybrid system verification methods
(e.g., HybridSAL [Tiwari, 2012]) require equation-based
models. Engineers use these formal methods to prove that
systems will never reach critical states for all possible pa-
rameter values in a section of the design space. In previous
work, we have discussed how qualitative reasoning can be
used on Modelica models consisting only of a subset of
the language [Klenk et al., 2012].

In addition to this common core, Modelica allows de-
signers to specify behavior using algorithms and provide
advice for simulation engines. While designers desire this
flexibility and control, these features make qualitative rea-
soning and other formal methods difficult to apply to Mod-
elica models. In addition to simulation advice and explicit
algorithms, we identify three other modeling practices that
hinder the application of formal methods: unnecessary
component model complexity, use of computational state,
and incomplete models.

This paper is structured as follows. We begin with a
brief overview of qualitative reasoning. Then, we discuss
how the Modelica compiler may be used by formal meth-
ods. After which, we provide examples of each class of

hindrances along with suggestions for improving the ap-
plicability of Modelica models for formal methods. We
close with a discussion of related work and some general
reflections on modeling.

2 Qualitative reasoning and Design
Qualitative reasoning has its roots in automating reasoning
about physical systems [Forbus, 1984][Kuipers, 1994][de
Kleer and Williams, 1991]. Based on the intuition that en-
gineers employ qualitative reasoning extensively through-
out the design process, numerous researchers have sought
to apply qualitative reasoning to design problems includ-
ing functional reasoning [Everett, 1999][Wetzel and For-
bus, 2009], diagnosis [Struss and Price, 2004], and au-
tomated FMEA generation [Snooke and Price, 2012].
An important subtask is qualitative simulation [Forbus,
1984][Kuipers, 1994], which provides an abstract descrip-
tion of the possible behaviors of a mathematical model.
We illustrate qualitative simulation as well as some uses
in the design context with a series of examples.

First, consider the spring block system in Figure 1 with
the initial condition of a displacement of 5 meters com-
pressing the spring. Given a set of numeric parameters
and a simulation duration, Modelica produces a numeric
simulation (i.e., a sequence of real values for each vari-
able). On the other hand, qualitative simulation begins
by creating a set of abstractions for each variable. The
simplest set is three qualitative values (Q-, Q0, and Q+)
corresponding to the sign of the real valued quantity. Each
continuous variable can have as many higher-order deriva-
tives as necessary, each of which specifies a direction of
change (↓(DEC), →(STD), ↑(INC)) at that derivative or-
der. Qualitative simulation determines all possible se-
quences of qualitative states a system can go through over
time, called an envisionment. Changes in the qualitative
state occur when a variable or its derivative reaches a land-
mark (e.g., the displacement of the block crosses zero, the
velocity of the block crosses zero). Crossing a landmark
occurs in an instant that has no duration (represented as
a rectangle) and approaching or departing a landmark oc-
curs over an interval of time (represented as an oval). The
numeric simulation produces a sequence of numbers that
must be interpreted by the designer to understand the be-
havior. On the other hand, the envisionment illustrates
directly that this system is oscillatory because the graph
is a loop (i.e., the system returns to the same qualitative
state). Furthermore, while the numeric simulation results
apply to specific values for the mass and compliance of
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(a) Spring block system

mass1.v <36> [Q0 : DEC]

<118> [Q- : DEC]

<243> [Q- : STD]

<308> [Q- : INC]

<433> [Q0 : INC]

<512> [Q+ : INC]

<637> [Q+ : STD]

<702> [Q+ : DEC]

<827> [Q0 : DEC]

(b) Envisionment with qualitative values for the velocity and its
derivative are shown. Each state is assigned a unique id. Ovals
represent qualitative states that exist over an interval of time and
rectangles represent qualitative states that exist only for an in-
stant.

Figure 1: Qualitative simulation example

the spring, the envisionment illustrates that the behavior
of the system in Figure 1 will be oscillatory for every set
of parameters.

One reason for performing simulations is to determine
if a system will meet some specified requirement. Figure
2 illustrates a simple rotational mechanical system with a
specified requirement that the angular velocity must ex-
ceed 1 rad/s. This requirement can be encoded in Mod-
elica using an enumerated type: Unknown, Success,
Violated. The value of this variable begins as Unknown
and changes to Success if the angular velocity of the fly-
wheel exceeds 1 rad/s. As shown in the Modelica simula-
tion (Figure 2), the system does not meet the requirement.
Meanwhile, the envisionment (Figure 2) contains an in-
terval in which the flywheel is accelerating followed by
two branches: one where the requirement is met (shown
as a green uparrow) and one where the inertia reaches

its asymptote (shown as a blue rectangle). This multi-
trajectory simulation illustrates the range of behaviors that
are possible given underspecified parameters (e.g., the mo-
ment of inertia, applied torque, and damping coefficient
are known only to be positive). The Modelica simulation
in Figure 2 corresponds to the the following trajectory of
qualitative states: 48 → 122 → 313. Because this envi-
sionment includes a trajectory in which the requirement’s
value is Success, the designer knows that this topology
may satisfy the requirement with different parameter val-
ues (e.g., increasing the torque or decreasing the damping
factor).

Figure 2: Qualitative Simulation and Requirements

(a) Modelica configuration with requirement that the flywheel
reaches 1rad/s.

Desired Velocity 
Angular Velocity 

(b) Modelica simulation demonstrating that the current set of pa-
rameters does not meet the requirements within 5 seconds.

Requirment , Inertia1.w <48> unknown , [Q0 : INC]

<122> unknown , [Q+ : INC]

<313> unknown , [Q+ : STD] <247> unknown , [Q+ : INC]

<378> unknown , [Q+ : INC]

<411> success , [Q+ : INC]

(c) The envisionment shows that this configuration could meet
requirements with a different set of parameters. Cyan nodes rep-
resent terminal states, magenta nodes represent discrete events,
and green uparrow nodes represent states that meet requirements.

Our intuition is that designers use this qualitative under-



standing of the design space to make decisions about com-
ponents, parameters and configurations. Qualitative sim-
ulation is applicable early in the design process because
it operates without completely specified parameters. Fur-
thermore, qualitative simulation can be used to automate
a number of the reasoning tasks designers perform during
early design, answering such questions as:

• Could this configuration of components perform the
desired function?

• What kinds of failures might this design have?

• How would this system behave when increasing a
particular parameter?

Unfortunately, current qualitative simulation ap-
proaches are unable to make use of many existing Mod-
elica models. In the the rest of this paper, we discuss fea-
tures of the Modelica language and practice that hinders
the reuse of Modelica models by formal methods such as
qualitative reasoning.

3 Modelica models for formal methods
Modelica’s reuse and flexibility are central to its appeal
among designers, engineers, and researchers. Unfortu-
nately, these features create difficulties for applying for-
mal methods. Some problematic features are: com-
piler interaction, artifacts for numeric simulation, unnec-
essary component model complexity, algorithms, sequen-
tial states, and incomplete models. For each issue, we will
attempt to answer three questions:

• Why do designers use it?

• Why is this difficult for formal methods?

• What should be done to enable formal verification?

Before we discuss Modelica language issues, we dis-
cuss how Modelica compilers assist in our efforts to per-
form qualitative reasoning with Modelica models.

3.1 Using the compiler to facilitate other
analyses

Modelica tools include a compiler that takes as input a
Modelica model and through a sequence of processes pro-
duces executable code to perform numeric simulation. Ac-
cess to intermediate results during the compilation process
facilitates other analyses. Here we highlight three aspects
of the compilation process we have found useful.

Model construction language
Modelica has a powerful model construction language in-
cluding iteration and conditional declarations. For exam-
ple, the Damper model (shown in Figure 3) includes a con-
ditional heat port, which allows the same damper model to
be used in systems that consider thermal connections and
those that do not. Also, compilers perform a number of
optimizations on the model including index reduction and
removal of redundant variables. These optimizations are
applicable to qualitative reasoning as well. Therefore, our
approach uses an XML representation of the hybrid-DAE
produced by OpenModelica [Parrotto et al., 2010]. Fur-
thermore, we encourage the ongoing efforts to standard-
ize an XML representation of the compiled model across
Modelica tools.

System initialization
System initialization is a well-known difficult problem,
and Modelica provides a number of language constructs
to direct the solver to the initial state [Mattsson et al.,
2002]. These include the use of the :start and :fixed
keywords, initial equations and initial algorithms. Quali-
tative simulation also requires knowing the initial values
of the system variables. Therefore, we use OpenModelica
to solve the initial equation system for a consistent set of
initial values from which to begin our analysis.

Function inlining
Many Modelica functions are merely mathematical rela-
tionships between input and output variables. Consider
the from_kmh function in the Modelica Standard Library
shown in Figure 4. Function inlining is performed by
many Modelica compilers to replace calls to these func-
tions by their equivalent equations. The problems with
analyzing arbitrary functions will be discussed in Section
3.4. Therefore, having the compiler perform these opti-
mizations assists in translating Modelica models for use
in formal methods.

Figure 4: Function that converts km/h to m/s

function from_kmh;
input NonSIunits.Velocity_kmh kmh ;
output Velocity ms "metre per second value";

algorithm
ms := kmh/3.6;

end from_kmh;

3.2 Artifacts of numeric simulation
Modelica is primarily a language for modeling and simu-
lating mathematical models that evolve as a function of
time. Consequently, there exist many constructs to as-
sist with issues that arise in numeric simulation. While
some are irrelevant for formal methods (e.g., noEvent and
smooth), in this section, we discuss three that complicate
formal methods analyses.

Equality involving continuous time variables
Modelica events occur at zero crossings. Therefore,
it is not possible to have a condition testing equal-
ity of real valued variables, s1 and s2. Instead, the
Modelica.math.IsEqual function from the Modelica
Standard Library which is computing using Equation 1.

result := abs(s1− s2)<= eps; (1)

While Equation 1 can be translated directly for for-
mal methods, it both needlessly adds complexity to for-
mal analysis and may yield unexpected results. Intuitively,
IsEqual is testing whether s1 and s2 are equal. If the
Equation 1 is directly encoded, the formal analysis will
have to consider 7 cases: (1) s1− s2 is negative and more
than eps from 0, (2) s1− s2 = −eps, (3) s1− s2 lies be-
tween −eps and 0, (4) s1− s2 = 0, (5) s1− s2 is positive
and less than eps, (6) s1− s2 = eps, (7) s1− s2 > eps. In
effect, it treats eps as an important parameter the system.
As a consequence the number of states needed to be an-
alyzed grows exponentially in the number of IsEqual’s
translated in this way. Finally, the formal analysis could



Figure 3: Damper model from the Modelica Standard Library includes a conditional heat port connection that is set during
model instantiation

model Damper "Linear 1D translational damper"
extends Translational.Interfaces.PartialCompliantWithRelativeStates;
parameter SI.TranslationalDampingConstant d(final min = 0, start = 0) "Damping constant";
extends Modelica.Thermal.HeatTransfer.Interfaces.PartialElementaryConditionalHeatPortWithoutT;

equation
f = d * v_rel;
lossPower = f * v_rel;

end Damper;

produce incorrect results because it will accept as possi-
ble states in which s1 is not equal to s2 which is clearly
against modeler’s intent. Because formal methods al-
low for equality between continuous-time variables, the
best solution is to simply translate IsEqual(s1,s2) to
s1 == s2.

Smoothing functions
Another piece of advice supplied by the model
to the simulation engine concerns smooth-
ing functions. For example, the function
Modelica.Fluid.Utilities.regStep approxi-
mates a step function with a second order polynomial
that is continuous and differentiable. Unless the transient
behavior is the focus of the model, formal methods are
more applicable to the idealized behaviors.

3.3 Unnecessary component model complexity
Modelers should be as concise and clear as possible when
authoring models.

Optional model parameters
The inheritance features in Modelica make it easy to pro-
vide different variants of components that account for dif-
ferent behaviors. Therefore, in each model, every param-
eter should affect the behavior of the model. When this is
not the case, the modeler has increased the complexity of
the model unnecessarily. Consider the w_small parame-
ter PartialFriction model. The default value of this
parameter is 1e10 and the comment directs the engineer
to set this to a small value if particular discontinuities are
expected. This absurdly high value is to prevent it from
affecting the simulation. Making these two separate mod-
els that inherit from the same model would facilitate for-
mal methods by considering the w_small parameter only
when it is necessary. Otherwise formal analysis will have
to needlessly analyze the distinction between wsmall and
w.

Component modes
The evolutionary development of the Modelica language
is apparent in the models of the Modelica Standard Li-
brary. For instance, many models use Integer variables
to define a mode of operation for the model. However,
these variables are typically unbounded, and often the de-
fault variable value of zero is not an applicable mode. Us-
ing enumerations would provide a definite set of modes
of operation for these variables. However, even this is not
sufficient. In some tool systems, such as OpenModelica,
parameter variables of enumerated types are not required
to be initialized to any particular value, and in that case

they default to the integer default value of zero, which is
an invalid integer value for that enumerated type! In gen-
eral, the semantics of operating modes, and more specifi-
cally enumerations (and parameters), seems to need more
work in Modelica.

3.4 Imperative Code
Modelica algorithms can be executed at two times: flatten-
ing and simulation. All of the former algorithms pose no
difficulty to formal analysis as they are executed before the
DAE is created. Imperative code embedded in the DAE,
typically in functions, to be executed at run time presents
a fundamental challenge. Imperative code is important
to model designers because certain numerical computa-
tions are easier to express as algorithms as opposed to
equations. The Modelica language is Turing-complete, so
proving properties of arbitrary Modelica programs is as
hard as proving properties of any program. And proving
properties of programs is a challenging intellectual field
all to its own. Formal methods cannot be expected to an-
alyze such algorithms. For common functions, we have
created qualitative equivalents. For example, interpolation
tables are essential to modeling complex physical systems,
and, therefore, we have created an analogous concept for
qualitative reasoning. There is independent interest in the
Modelica community in elimination of imperatives when
possible. For example, function inlining converts some
imperatives to constraints automatically [Papadopoulos et
al., 2012] .

We have applied our analysis technique to a wide vari-
ety of models. Too often we encounter needless impera-
tives. For example, consider:

Model Single_Clutch_Controller
Output Real y;
Input Integer u;
parameter Integer num_gears = 5
parameter
Integer gear_nums[num_gears] = {-1,1,2,3,4}
parameter Real engagement[num_gears]

= {0.0, 1.0, 1.0, 0.0, 0.0};
algorithm
y := 0.0;
for i in 1:num_gears loop

if u == gear_nums[i] then
y := engagement[i];

end if;
end for;

end Single_Clutch_Controller;

model GBX_5_clutch_controller
...



Modelica.Blocks.Interfaces.RealOutput clutch_1;
Single_Clutch_Controller controller_c1

(num_gears=num_gears,
gear_nums=gear_nums,
engagement=c1_eng);

...
equations

connect(controller_c1.u, gear_selected);
connect(controller_c1.y , clutch_1 );
...

end GBX_5_clutch_controller;

Given a desired gear, the controller selects the clutch to
activate. The algorithm block simply looks up the array
index of the desired gear and reads off the clutch needed
to engage. The clutch can be modeled as a table:

x y
-1 0.0
1 1.0
2 1.0
3 0.0
4 0.0
X 0.0

Modelica has a table primitive (which begs the question
why it wasn’t used in this model). However, this particular
table can be expressed as a Modelica equation:

y = if (x=1 or x=2) then 1.0 else 0.0;

To summarize, our approach to imperative code is:
• For widely used MSL functions such as interpolation

we design them as primitives for the qualitative anal-
ysis. These function names appear in the XML DAE
and thus can be treated as primitives.

• In limited cases, imperative code can automatically
be translated to declarative code by function inlining.

• Key MSL models containing imperative code are be-
ing rewritten to be purely declarative (or use only
known imperative primitives).

• User created functions and algorithms are currently
not allowed. One unexplored possibility is the user
must annotate the model specifying a piecewise lin-
ear approximation of the imperative code’s behavior.

3.5 Sequential States
Many models include sources that iterate through a
sequence of states (Modelica.Blocks.Sources.
SawTooth) or components that exhibit delayed effects
(Modelica.Blocks.Logical.TriggeredTrapezoid).
The primary way this is handled in Modelica is by
triggered Modelica events and setting a discrete-time
real value representing the time at which the next
state should change. Consider the variable T in the
TriggeredTrapezoid model shown in Figure 5.

These models are difficult to analyze due to the non-
local effects of the setting of the discrete-time variable.
We propose to rewrite them without explicitly referencing
time. This is done by using the events to set the rate and
then the delayed effects occur when one of the continuous
variables reaches a limit.

3.6 Incomplete models
Another complicating issue is that model authors fre-
quently build models until their needs are met. While
these models produce the simulation results the modeler
expects, other analyses may have trouble using them due
to untyped variables and operating regions.

Untyped variables
Modelica allows modelers to give types to variables, but
modelers frequently use Real instead of more specific
types. The Brake model in MSL defines mue0 as type
Real instead of CoefficientOfFriction. Automated
fault modeling techniques (e.g., FAME [de Kleer et al.,
2013]) construct better fault models if variables are typed
correctly.

4 Related work
The differences between the modeling languages used by
engineers (e.g., Modelica, C++) and those used by model
checking tools (e.g., finite state automata) hinder the de-
ployment of formal methods in the design process. Re-
searchers have taken both top-down and bottom-up ap-
proaches to overcoming this hurdle. Carloni et al. exem-
plify the top-down approach by arguing for a semantic-
aware interchange format to make formal methods ap-
plicable across languages [Carloni et al., 2006]. As an
alternative to attempting to unify all hybrid systems lan-
guages, bottom-up approaches define automatic transla-
tions between subsets of pairs of languages. For exam-
ple, Lundvall et al. translate a portion of Modelica mod-
els into hybrid automata for verification [Lundvall et al.,
2004]. Our approach follows the bottom-up tradition, and
the contribution of this paper is a discussion of five Model-
ica modeling practices that hinder the automated analyses
of Modelica models by formal methods.

5 Reflections on modeling
Modelica makes some fundamental semantic choices
which are at odds with the formal methods, qualitative
reasoning and cyber-physical systems communities. For
example, Modelica allows one event to cause another —
that is, two instants immediately following one another.
Also, formal methods typically model behavior by modes,
guards, and constraints. Modelica’s guards and modes ex-
ist at the system level as conditions, but are not directly ac-
cessible from the models. So the common-sense engineer-
ing notion of mode has to be expressed by extra boolean
variables and conditions. This can lead to very counterin-
tuitive (to an engineer) models (e.g., the transistor models
in MSL). For the purposes of our research, we have to
accept Modelica’s semantics. We do not know yet what
problems this will cause.

Our experiences using Modelica models for other anal-
ysis purposes motivates some reflections on good model-
ing practices. In the course of this research, we have had to
study and analyze a great many Modelica models. Some
models in the MSL are diamonds, other models are dis-
asters. We often wish that the Modelica community em-
ployed more standardized modeling practice. Modelica is
such a general language that a modeler can write incred-
ibly stupid models. Maybe that is because it is very hard
to write clean, concise models. To summarize we suggest
the following modeling principles:



Figure 5: Portion of the TriggeredTrapezoid model highlighting the use of discrete-time variables to initialize the
timing of state transitions.

block TriggeredTrapezoid "Triggered trapezoid generator"
extends Modelica.Blocks.Icons.PartialBooleanBlock;
...

protected
...
discrete Modelica.SIunits.Time T

"Predicted time of output reaching endValue";
equation

y = if time < T then
endValue - (T - time) * rate else

endValue;
when {initial(),u,not u} then

...
T = if u and not rising > 0 or not u

and not falling > 0
or not abs(amplitude) > 0
or initial() then

time else
time + (endValue - pre(y)) / rate;

end when;
end TriggeredTrapezoid;

Figure 6: Portion of the TriggeredTrapezoidPARC model that explicitly states the conditions for state transitions.

block TriggeredTrapezoidPARC
...

protected
Real rate;

equation
when {initial(),u,not u,y>offset+amplitude,y<offset} then
rate = ...

end when;
der(y) = rate;

end TriggeredTrapezoid;

1. Models should be easy to understand for both ma-
chines and people.

2. Models should be as declarative as possible, even
when it’s simpler to write imperative code. Such
models are easier to understand by both people and
machines.

3. Any “advice” to the compiler, especially dealing
with small epsilon quantities in models should be
done in standardized ways, such as IsEquals.

4. All variables should be declared by their physical
type.

5. Models should have assert statements describing
their range of applicability.
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